Posts Tagged ‘Voyager’


Wednesday, September 24th, 2008 by Evan Finnes

Saturn’s rings were first discovered by Galileo Galilei in 1610, but he was unable to identify them as rings, instead he called then “ears”. In 1655 Christiaan Huygens became the first person to identify Saturn’s “ears” as Rings. Since the discovery of the rings in 1610, there have been many theories which have attempted to describe the formation of the rings.

The most popular theory is that Saturn’s rings are only 100 million years old. These young rings would have formed by a commit that was ripped apart by Saturn’s tidal forces, or by a moon which was destroyed by a large asteroid impact. The strong evidence for this theory is that the rings are much too bright to be very old, because as time passes the rings should accumulate dust which would slowly darken the rings.

Recent simulations, based on data gathered by the Cassini mission, show that the rings might be much larger and much older than previously thought, perhaps as old as four billion years. These simulations show that the particles in the rings form clumps and are not evenly distributed particles. This could mean that there is an ongoing warfare between formation and destruction within the rings. The particles slowly clump together and a blasted apart by micro-meteors. The researchers believe that the reason for the relative brightness of the rings could be that the dust is incorporated into the centers of the clumps after reformation.

The rings consist of eleven major sub-rings. For the most part the rings have been given lettered names in the order of their discovery. The D ring is the closest to Saturn and is very faint. Voyager 1 discovered that the D ring consists of three ringlets: D73, D72, and D68. Recently Cassini has discovered that D73 has moved 200 km towards Saturn since its discovery. The C ring is about 5 meters thick and it has a mass of about 1.1×1018 kg. If viewed from above or below the ring appears transparent because 5 to 12 percent of the light perpendicular to the ring is blocked. The B ring is the thickest ring, about 5 to 15 meters. Voyager discovered “spokes” inside the B ring; these spokes were not observed again until Cassini observed them in 2007. These spokes may be seasonal phenomena, as they disappear in midsummer then reappearing around equinox, and disappearing again around midwinter. The A Ring is 10 to 30 meters thick and has a mass of about 6.2 x 1018 kg. In 2006 4 small tiny moons were discovered inside the A ring. There is now estimated to be over 1000 such moonlets inside the A ring. The F was discovered in 1979 by Pioneer 11. The ring is the most active of the rings, and is the very thin outermost ring. The ring is held together by two moons, Prometheus and Pandora. Occasionally during Prometheus’s orbit, it approaches the ring causing kinks and knots. It also steals material from the ring leaving behind a dark channel.

Besides their formation, there is still much to learn about the rings. For instance, what causes the seasonal spokes which occur inside the B ring? Why is some of the material accreted into tiny moonlets, while the rest remains as independent particles or clumps? Why has the ringlet D73 moved in towards Saturn? Whatever the answers may be, anyone who looks at Saturn through a telescope knows one thing for sure–Saturn is one of the most amazing and beautiful objects in our solar system.

[Slashdot] [Digg] [Reddit] [] [Facebook] [Technorati] [Google] [StumbleUpon]

Will Solar Sails Ever Catch the Cosmic Wind?

Monday, September 8th, 2008 by Evan Finnes

Imagine a space exploration vehicle that needs little fuel, and can continually accelerate as long as it is in contact with solar radiation. This is the idea behind solar sails, which were first dreamt up by the great German astronomer, Johannes Kepler. Since then they have been in the minds of many astronomers, engineers, and science fiction authors. To date there has not been a successful deployment of a solar sail.

A spacecraft would deploy a large membrane of reflective material, this “sail” would reflect protons delivered by solar radiation. This exchange of momentum by reflecting photons would cause a resulting thrust of the space craft. Even though such a sail would generate a continuous acceleration, this technology is thought to be impractical for long distance travel because of the enormous sail that would be needed, the relatively slow start acceleration, and the small amounts of radiation available at distances far from the sun. By aiming the sail against the Sun, a reverse thrust, or deceleration would be achieved, making solar sails a fuel saving technology useful in repositioning satellites in Earth’s orbit or slowing satellites as they approach other planets.

NASA and Ames Research Center recently built NanoSail-D. The Sail was made from a composite of Aluminum and space age plastic. When opened the sail was suppose to span 100 square feet, and the entire space craft weighed less than 10 pounds. The purpose of this mission was to see if sails could be used to direct a satellite back into the Earth’s Atmosphere where it can be burned up, thus leaving less clutter in Earth’s orbit due to unused satellites.

However, not all missions end in glory. On August 2, the NanoSail-D space craft was launched from the Kwajalein Atoll aboard the SpaceX Falcon 1 rocket. There was a system failure in stage 1 of the launch, and the craft never reached orbit. This resulted in the loss of NanoSail-D. NASA has a spare NanaSail-D and is currently working on plans for a future launch. A similar mission also failed in 2005, when the Planetary Society and Cosmos Studios launched Cosmos 1.

If the technology for making and deploying large sails becomes available the practicality for deep space missions would change. It took Voyager more than three decades to escape the solar system using conventional rockets, but a spacecraft using large and efficient sails would be able to catch up to the Voyager spacecrafts in less than ten years.

[Slashdot] [Digg] [Reddit] [] [Facebook] [Technorati] [Google] [StumbleUpon]


Wednesday, August 27th, 2008 by Evan Finnes

Saturn’s sixth largest moon, Enceladus, was discovered in 1789 by British Astronomer William Herschel. With a low albedo and close proximity to Saturn, Enceladus is difficult to observe. Because of this difficulty little was known about this moon until the Voyager flybys in the 1980’s. Voyager 1 discovered that Enceladus is located in the densest part of Saturn’s E Ring, and Voyager 2 discovered that Enceladus has diverse and relatively complicated surface features.

The Voyager missions generated a number of questions about the small moon: “Is there a connection between Enceladus and Saturn’s E-ring?” “What is causing the tectonic activity which is deforming Enceladus’s surface?” The recent Cassini mission was able to answer these questions, along with generation new discoveries and new questions.

To answer the first question, Cassini discovered that Enceladus is the fourth known body in the solar system with active volcanism. The other three are Earth, Jupiter’s moon Io, and Neptune’s moon Triton. This volcanism causes icy jets, plumes of water vapor, and other materials to be shot into the atmosphere. It is this cryovolcanism which was determined to be the cause of Saturn’s E Ring. Just recently Cassini photographed the volcanic southern pole. These pictures revealed a geological feature scientists are calling “tiger stripes”. These tiger stripes are 300 meter deep fractures and are surrounded by chunks of ice, and are the source of Enceladus’s volcanism.

Cassini also discovered the cause of the tectonic activity. Enceladus, like many other moons is traped in orbital resonances, this causes tidal heating on the moons interior. Like thought to exist on Jupiter’s moon Europa, this could also cause Enceladus to have a subsurface liquid ocean. Because of the volcanic activity a subsurface ocean on Enceladus is though to be only tens of meters beneath the surface, where the oceans on Europa are thought to be 100 kilometers beneath the surface.

Does Enceladus have a subsurface ocean? If it does, is this another place to look for signs of life? With many more Enceladus flybys to come, we may yet find out if there is a subsurface ocean, but we will certainly have to wait for the right mission if we want to determine if life exists.

[Slashdot] [Digg] [Reddit] [] [Facebook] [Technorati] [Google] [StumbleUpon]

Our Undiscovered Universe Blog is proudly powered by WordPress
Entries (RSS) and Comments (RSS).